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The mathematical basis for resonance is investigated using a model equation 
describing one-dimensional dispersive waves interacting weakly through a 
quadratic term. If suitable time-invariant boundary conditions are imposed, 
possible oscillations of infinitesimal amplitude are restricted to a discrete set of 
wave-numbers. An asymptotic expansion valid for small amplitude shows that 
oscillations of different wave-number interact primarily in independent resonant 
trios. Energy is redistributed between members of a trio over a characteristic 
time inversely proportional to the amplitude of the oscillations in a periodic 
manner. The period depends on the initial conditions but is in general finite. 
Cubic interactions through resonant quartets are also discussed. The methods 
used are valid for a fairly wide class of equations describing weakly non-linear 
dispersive waves, but the expansion procedure used here fails for a continuous 
spectrum. 

1. Introduction 
Phillips (1960) drew attention to the phenomenon of resonance while discussing 

the role of small non-linear terms in the theory of ocean waves. As a necessary 
preliminary to the construction of a complete statistical theory for a continuous 
spectrum, he investigated the interactions of pairs of infinite sinusoidal wave- 
trains of small, but not infinitesimal, amplitude. Infinitesimal waves are 
described by a linear equation of which these wave-trains are solutions in the 
normal modes. The largest non-linear terms in the equations give rise to sinu- 
soidal velocity and pressure fields with wave-number and frequency equal to the 
sum (or difference) of the wave-numbers and frequencies of the primary waves, 
and proportional to the product of their amplitudes. These fields may be 
interpreted as the response of the system of oscillators described by the linear 
part of the equations to the forcing terms due to the non-linear part. This 
response is, in general, constant and very small, but an apparent exception 
occurs if the frequency of the forced oscillation is equal to the frequency of 
infinitesimal free waves of the same wave-number. Resonance then occurs, and 
the forced wave may build up after a sufficient number of oscillations to be 
comparable in magnitude with the primary waves. At this stage the perturbation 
scheme used by Phillips breaks down. 
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Phillips also pointed out that the frequency relation for ocean waves does not 
admit of quudratic resonances; but if three primary waves interact (two of which 
may be identical), cubic terms in the equations may force resonant responses 
in a fourth mode. Longuet-Higgins (1962) made further calculations of the 
interaction coefficients, and suggested an experiment for verification of the 
theory. 

Benney (1962) showed that if the amplitudes of the three primary waves are 
regarded as slowly varying functions of time, rather than as strict constants, the 
interactions can be described by much simplified equations apparently valid 
even when the amplitude in the fourth mode has become comparable with that 
in the other three. He obtained some integrals of these equations indicating that 
the process can be regarded as one of energy sharing between all four modes, the 
maximum energy in each being limited by the initial conditions. He also showed 
that, if the wave numbers of the three primary modes are not such that the 
resulting cubic terms can force an oscillation which resonates, the amplitude in 
the fourth mode remains an order of magnitude smaller. 

It will be shown below ($7)  that a complete solution to Benney’s equations 
may be obtained. This is a periodic function of time, the cycle of energy transfer 
for resonant or nearly resonant modes repeating itself after a long time which 
depends on the initial amplitudes and phases, but is, in general, finite. According 
to  this model there is thus no tendency towards equipartition of energy. This 
conclusion depends on equations in which non-linear terms of higher order than 
the cube of the slope of the sea surface are neglected. 

Meanwhile Hasselmann (1962) constructed a full statistical theory based on 
the postulate that waves of different wave-number are statistically independent. 
Using a formal expansion procedure he computed to lowest order the rate of 
transfer of energy between different parts of the spectrum. This transfer is 
associated with resonances of the type discussed by Phillips. In  an earlier version 
of this paper (Bretherton 1963) the author criticized the postulate of statistical 
independence on the ground that if true initially it will not persist after a sub- 
stantial transfer of energy has occurred. Subsequent correspondence has 
revealed that the effect of this on the rate of energy transfer is uncertain and 
these criticisms are being withheld for later publication. 

The discussions described above are all concerned with ocean waves. The 
algebra involved in calculating the interaction coefficients can be daunting, and 
the fact that the lowest order resonances can occur only through cubic inter- 
actions, although quadratic non-resonant interactions are also present, compli- 
cates the analysis. The phenomenon of resonance is, however, of potential 
importance for any system of weakly interacting waves in a dispersive medium. 
Several workers (e.g. Ball 1964) have investigated its possibility in other contexts. 

To clarify some aspects of the mechanism whereby energy is transferred 
between different wave-numbers we will illustrate them by reference to a simple 
system possessing the appropriate properties. A suitable example is afforded by 
the partial differential equation 
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This is in dimensionless form and has time derivatives of the second order only, 
as well as the simplest possible pon-linear term. However, all the methods used 
here are applicable to a much wider class of equations in which the coefficients 
are independent of time and position variables, the linear part describes dis- 
persive waves, and the non-linear part may be expanded in powers of the 
dependent variable(s) and its derivatives. One reasonable restriction is that 
energy should be conserved. In  the case of equation (1) we have 

so that 

may be interpreted as an energy density, and 

as an energy flux. A disadvantage of this model is that the formulae for orders 
of magnitude do not display the dimensions of the quantities involved. How- 
ever, the physical manifestations of resonance are so diverse that no unified 
interpretation can be given to the magnitude of a typical wave or oscillation, 
which is the small parameter here. Unless otherwise specified, all wave-numbers 
and frequencies are assumed to be of order unity, but amplitudes are very small. 

In  this paper the object is to investigate what simplifications can be made 
associated with resonance when discussing non-linear interactions between 
oscillations or waves of different wave-numbers and of asymptotically small 
amplitude. The main concern here is with oscillations, for which there is a 
discrete set of possible wave-numbers. An expansion scheme is presented 
(§$4,5) in which equations similar to those proposed by Benney (1962) describe 
the magnitudes and phases of the oscillations of lowest order. In  $5 6,7,  solutions 
to these equations are discussed. A different situation arises for the resonant 
interactions of waves with a continuous spectrum. It is then not possible to 
isolate a trio of interacting wave-numbers, but only bands about wave-numbers 
satisfying the resonance condition of width decreasing with the wave amplitude. 
The author hopes to discuss this case in a subsequent publication, using methods 
developed from those presented here. 

2. Notation and definitions 
When the magnitude of + is infinitesimal, the quadratic term on the right- 

hand side of equation (1) may be neglected and the equation becomes linear. It 
is then customary to describe the general solution as the superposition of a set 
of normal modes, 

(3) 

(4) 

+ = a(k)exp[i{kx+n(k)t}]+a( - k ) e x p [ i ( - k x + n (  - k ) t } ] ,  
where n(k) = T , / ( i -k2+k4) if k > 0, 
and n( - k )  = - n(k).  
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This sign convention has the minor advantage that the reality of $ is assured by 
the simple condition a(k) = a*( -k), ( 5 )  

where the asterisk denotes the complex conjugate, while the normal mode of 
equation (3) may be either a wave of amplitude a+(k) travelling in the positive 
Ox direction if the negative sign is taken in the first of equations (4), or a wave 
a-(k) in the opposite direction if the positive sign is taken. This double-valued 
nature of n ( k )  will not concern us greatly. 

It will be necessary also to consider sinusoidal functions like 
b(k,  n) exp { i (kx  + nt)}, 

where n does not satisfy the dispersion relation (4). These represent forced 
oscillations of the linear system described by the left-hand side of equation (l) ,  
as opposed to the natural oscillations which are the normal modes. In  any case 
the requirement that I& be real demands that for every pair ( k , n )  there corre- 
sponds the pair ( - lc, - n), with 

b(k ,n)  = b * ( - k ,  -n),  

and the mode will be described by either wave-number frequency pair indis- 
criminately. For every equation for a(k)  or b(k ,  n) there is a complex conjugate 
equation. This is the corresponding expression for a( - k) or b( - k, - n). 

If suitable reflecting boundary conditions (e.g. a$/ax = a31&/ax3 = 0 )  are 
imposed at given points, e.g. x = 5 X,, the function $(x,  t )  defined between these 
points may be extended outside this range as a periodic function of x of period 
4X,. Such a periodic function would remain periodic for all time to any order in 
the amplitude. The possible normal modes are then restricted to a discrete set 
of values of k and we will call them oscillations. When no boundary conditions 
are given k may have any real value and the normal modes are waves. Of course, 
in any given problem, if the boundaries are sufficiently distant it is appropriate 
to consider the discrete spectrum to be continuous, and the oscillations become 
waves. In  the sequel we will estimate how distant the boundaries must be if this 
is to be true. If X ,  is large, the permitted lines in the possible spectrum are 
separated by a small but finite line-spacing 

&k0 = n/2x,. ( 6 )  

Permitted values of the frequency are also restricted, the freqaency-spacing 
being approximately Sn, = c(k)&,, 

where ~ ( k )  = an/& 
is the group velocity. 

When $ is small but not infinitesimal, it is still sensible to regard it as the 
superposition of expressions like that of equation (3), with the same frequency 
relation (a), but the complex amplitude must now be a slowly varying function 
of time, a(k, t ) .  If we define the interaction time, f, as the time in which a typical 
amplitude changes by a significant fraction of itself, 

I d  
- - a(k, t )  N i-1, 
a at (7)  
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then, if n(k) i 9 1 for all relevant k, a(k, t )  is slowly varying and the interaction is 
weak. Iff - 1 or 4 1, as in the theory of homogeneous turbulence, then the inter- 
action is strong, we cannot regard the amplitudes as slowly varying, and none of 
the considerations of this paper apply. The reciprocal of the dimensionless inter- 
action time, B = f-l, is the small parameter of this paper. 

-1 
. 

1 k 

FIGURE 1. Two possible resonant trios if n2(k)  = 1 - ka + lc4. x , Waves travelling 
in positive Ox direction. 0, Waves travelling in negative Ox direction. 

The product of @ for the two normal modes (k2,n2(k2)) ,  (k3,n3(k3)) may be 
written in terms of sum and difference phases as 

a: a$ exp [ - i { (k ,  + k3) x + (n, + 12,) t}] + exp [i{(k2 + k3) x + (n2 + n3) t } ]  

+a,Xa*_,exp[ - i { ( k , - k , ) x +  (n,-n,)t}] 

+ a*_,a: exp [ i { (k , -  k3)x + (n, - n,) t)] ( 8 )  

Here we have used the shorthand notation a?, for a*( - k,), which is of course 
equal to a2. Through the first two terms above, the quadratic term on the right- 
hand side of equation (1) thus acts as a forcing function for the linear oscillator 
in mode (k, + k,, n, + n3) described by the left-hand side, and through the third 
and fourth terms it forces in the mode (k2-k3 ,n2-n3) .  This effect must be 
summed over all pairs +k,, kk, in the wave-number spectrum. However, 
Phillips (1960) pointed out that the response of the oscillators is very small, 
unless the forcing frequency happens nearly to coincide with the natural 
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frequency appropriate to that wave-number. Such a resonance occurs for wave- 
numbers in the neighbourhood of k,, k,, k,, where 

and n1 = n(k,) 
is a solution of the frequency relation (4 ) .  Equation (9) includes the possibility 
of resonance through difference phase if i t  is interpreted as needing to be satisfied 
only by either of the alternative ways (e.g. (k2,n2), ( -  k,, -nz))  describing each 
of the modes 1, 2 and 3. 

When the condition ( 9 )  is written in this form it is obvious that if modes 2 and 3 
can combine to resonate with mode 1,  then modes 3 and 1 can resonate with 2 
and modes 1 and 2 with 3. Thus if the change in amplitude in mode 3 is influenced 
by the amplitudes in modes 1 and 2, both the inverse processes will occur, and 
the three modes must be considered together as a resonant trio. 

Suitable wave-numbers for a resonant trio are shown in figure 1. If k, is altered 
slightly, both k, and k, must be altered by determinate amounts to maintain the 
resonance conditions. There are thus two singly infinite families of possible trios 
for the frequency relation considered here, one family for waves travelling in the 
positive direction, the other similar family for waves in the negative direction. 
Within a certain band of wave-numbers, given any particular mode there is 
a unique pair of modes with which it resonates. We will confine our attention 
primarily to wave-numbers in this band. 

3. Hwistic equations for resonant trio 
In  this section we will follow a heuristic approach, along the lines suggested 

by Benney (1962),  investigating the interactions of a discrete set of oscillations 
in normal modes. It will be shown in $5 4 , 5  that this type of approach may be 
justified formally under certain conditions for oscillations, but not for waves, in 
the sense in which these terms are defined in 5 2. A detailed study of this case is 
of value for comparison and contrast with the effects of resonance on groups of 
waves and within a continuous spectrum, which the author hopes to describe in 
a later paper. 

Following Benney, we take in this section as our representation of a solution 
to equation ( l ) ,  

This differs from equation (3) in that the amplitude a(k, t )  in any mode is regarded 
as constant over a few oscillations but not over a time of order f. The reality 
condition of equation (5) is still applicable, so terms are present in pairs (k, n(k))  
and ( - k, - n(k)) .  Equations will also occur in pairs, that for a( - k,  t )  being the 
complex conjugate of that for a(k, t ) .  

If we substitute the representation (10)  into the governing equation (l), the 
left-hand side becomes 
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The coefficient of a(k) must vanish, because the frequency n has been chosen to 
satisfy the dispersion relation.equation (4) for the linearized problem. The right- 
hand side of equation (1) consists of a sum of terms like expression (8). If now we 
divide by exp [i{k,~c:+n,t}], for some particular (k,, nl(kl)), every term still 
contains a rapidly oscillating phase factor like exp i{(k2 - k,) x + (n, - n,) t } ,  with 

d2a da, 
the exception of 

2 + 2 i n  - 
a t 2  dt 

on the left-hand side and 2ag a; 

on the right-hand side, where k,, k, are uniquely related to k,  by the condition 
that the relative phase 

- (k ,  + Ic, + k3) x - (n, + n2 + n,) t 

should vanish identically, i.e. through the resonance condition (9). The factor 2 
appears because the pair 2,  3 may arise in either order. If now we average over 
a time which is long compared to a typical period, but short compared to the 
interaction time f, the contribution from all the rapidly oscillating terms is small 
and we are left with 

d2a da, 2 -I- 2in, - = 2ag a: 
a t 2  dt 

It is now seen that the assumption that al(t) is slowly varying is only consistent 
if the magnitude of a2a3 is very much less than a,, or in general if 

la] < 1 for all k.  

However, in this case the term d2al/dt2 is small compared to n,(da,/dt) and may 
be neglected. There are similar expressions for a, and a,, which wave-numbers 
also resonate with Ic,, so finally the approximate equations are 

in,(da,/dt) = ata t ,  

in,(da,/dt) = a: a:, 

in3(da3/dt) = afag. 

These describe the interactions of any trio which satisfies the resonance condition, 

k,+k,+k,  = 0, 

n,+n2+n3 = 0. 

Each trio thus behaves (to a first approximation at least) independently of all 
the others, and interactions take place within each resonant trio on a time 
scale i! of order a-l. 

Weak points in this argument are that the precise meaning of slowly varying 
and rapidly oscillating functions is unspecified, except that the average value 
of the latter over a suitable time interval must be small, and also it k n o t  clear 
what the next approximation to equations (11) should be or even how to set 
about attaining it. For oscillations, for which k,  n are restricted to discrete 
values, there may be no values a t  all which satisfy the resonance condition 
exactly. How much tolerance is appropriate also needs clarification. 
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4. An explanation of the expansion procedure for oscillations 
These difficulties may be resolved for oscillations, though not so easily for 

waves, by adopting a formal asymptotic approach based on two time variables. 
The author first started thinking along these lines following a suggestion from 
Prof. Benney himself. The precise arrangement necessary has caused consider- 
able effort. It is based on the two time method due to Krylov and Bogoliubov 
(Minorsky 1962) but with inspiration from the matched expansions for low 
Reynolds number %ow round spheres described by Proudman & Pearson (1957). 

An unusual element is that although everything is arranged as an expansion 

$(x,t) = E1$+c2z$+e33$+ ..., (12) 

in successive powers of e, the nominal order of magnitude so defined should be 
regarded only as a device for denumerating all the terms which arise when 
successive approximations 

e l$@, t ) ;  

E l$(G t )  + 2$(x, t ) ;  
E t )  + e2 &(x, t )  + s3 3$(x, t )  ; etc. 

are substituted into equation (1) and into the initial conditions 

$(x, 0) = F ( x ) ,  a$/at(x,  0)  = G(x) .  

This procedure ensures that every term arising is included sequentially some- 
where, but the crucial test of an asymptotic expansion is whether the remainders 

$(x, t ) ;  @(x, t )  ; 3R(5, t ) ,  etc., 
after substitution of successive approximations have bounds which are of 
increasing order in E uniformly in some domain. In  this case, if F ( z )  and G(x)  
have continuous derivatives of all orders, and if 

for any To, we have 
-xo d x < so, 0 < E t  < To, 

I,R(x,t)l < ,Be2; lzRl < 2 B ~ % ;  l 3 ~ J  < 3 ~ e 3 ;  etc., (13) 

so the remainders increase in order of magnitude by only €4 at each stage. Thus, 
to ensure that all the terms of least possible order e3 have been included, it is 
necessary to carry the prescription for constructing successive approximations 
to nominal order e5 (table 1 on p. 472). For the majority of terms the least 
possible order is equal to the nominal order, but it is not possible to say this for 
all. Thus equation (12) cannot be interpreted as meaning that there exists a 
function &(x, t )  which is independent of E and has magnitude about 1, for it will 
be seen that E enters explicitly into the prescription for & and some terms 
entering %$ have actual magnitude €4. 

An example of this type of behaviour by the remainders is provided by the 

22 function 
f(Z,E) = s+22+22 (z,e 2 0);  
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which may be expanded either as 

The first expansion is valid nominally when x is of order unity, but it may be used 
provided E / Z  -+ 0 with e. The second expansion is designed for 5 = Z / E  of order 
unity, but extends to any region in which €5 = x -+ 0. The expansions are thus 
valid in overlapping regions and may be matched where x-+ 0, X / E +  00. In  this 
region the two approximations of nominal order zero are respectively 

1 -- - 1 - & +  ..., 
1 + + x  

and 
1 

- I - - +  .... -- 25 
1 + 2 g  25 

Thus a correct approximation in this region isf(z) = 1; but if we wish to describe 
f (2, E )  over the whole region 0 < x < co, the minimum error is made by taking the 
second formula for z < O(e*), and the first for z 2 O ( E ~ ) .  The error is then 
bounded uniformly over the whole range, but is O ( d )  not O(E) .  After a further 
approximation if x > €4, 

O r  f(z) = 1 - (1125) - i s<  if x < €4, 
the largest neglected terms are 

f(z) = 1 - &x - (e/2x) 

or 

which are both O(E) at the matching point. It does not appear possible to find 
an expansion for f ( z , e )  in powers of E for which the order of the remainder 
increases by the same power at each stage uniformly over the whole range of x .  
In  this paper, the analogue of the variable z is n - n ( k ) ,  the difference of the 
frequency n of an oscillation from the value n(k) for natural oscillations of the 
same wave-number. 

If E is a small parameter describing the overall magnitude of the oscillations, 
we define two new time variables 

T = et, 7 = t. 

These are clearly not independent, once E is specified, but they give rise to a 
different asymptotic structure as E +  0. Almost all the solutions of equation (1)  
of small amplitude are roughly oscillatory, and we will describe the phase of an 
oscillation primarily in terms of the unsealed variable 7, but its complex 
amplitude in terms of the scaled variable T. This provides the formal codification 
of the idea of the amplitude as a ‘slowly varying ’ function. 

30 Fluid Mech. 20 
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The first term of the expansion is of the form 

,1C'(x, t )  = c 1a(k, T) exp Eqkx + n(k)7)1. (14) 
k 

,a(k, T) is an amplitude function which may vary by a substantial fraction over 
a scaled time T = To, but it is bounded and has least possible order unity, the 
same as its nominal order. &(x, t )  contains terms like ,b(k, n, T) exp [i{kx + n+j, 
describing forced oscillations which, in regions of wave-number-frequency space 
away from the curves n = n ( k ) ,  have amplitudes of order e2. There are also 
natural oscillations in the normal modes of nominal order e2, 

*a( k ,  T )  exp [i{kx + n( k )  T } ] .  

Higher-order terms 3@, etc., are made up in a similar way. 
The distinction between these two classes of forced and natural oscillations is 

not unambiguous, for if n - n ( k )  = cN,  a quantity of order E ,  an oscillation of 
frequency n may be described either as ,b(k, n) exp [i{kx + n ~ } ]  with ,b(k, n) 
constant, or as lu(k,  T )  exp [i(kx+ n ( k ) ~ } ]  with ,a(k, T )  varying exponentially 
with phase N T .  A similar confusion exists between ,a and 3b, etc., which appear 
as terms of different order in the expansion (12). 

We here settle the point by choosing a fixed positive M,, and saying once and 

In-n(k )J  < s+M, (15) 
for all that if 

the oscillation is described by &k, T ) ,  otherwise by ,b(k, n, T); and similarly for 
higher-order oscillations. The mathematically natural description as forced 
oscillations appears when n - n ( k )  is regarded as fixed as e+O; while the most 
interesting properties of natural oscillations appear for constant N = (n - n(k)} /e .  
The division (15) appears in a region where the two representations may be 
matched, and whereas for formal clarity it is essential to  have in mind a given 
value for M,, the ultimate results do not depend significantly upon it. 

It will appear that for the amplitude of one of the primary oscillations 
described by equation (14) to vary significantly with T, it must be at least partly 
resonant with two other modes 2 and 3. In  other words, there must exist 
k,, n2 = n(k,)  and k,, n3 = n(k,)  such that 

where N = O(1). For exact resonance, N = 0. But the expansion procedure 
described here is only applicable to  oscillations, for which k and n may only 
assume certain discrete values. 

If for given k,, k ,  and k ,  are restricted by the first of equations (16), then as k, 
increases in steps of 6k,, k, decreases by similar amounts. The sum EN increases 
in steps approximately equal to (c ,  - c3) 6ko where 

c,  = dn/dk Ik, 
is the group velocity at k ,  and c3 is similarly defined. Thus for given k, and nl(k,) 
there will be, if E is small enough, at most one permitted wave-number pair k,, k, 
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satisfying equation (16) with IN\ less than any predetermined value No. If the 
group velocities c, and c, are unequal, and if 

~ E N ~ / J c ~ - c ~ J  Sko < 1, (17) 

then at most one pair of modes can resonate with any particular mode 1. 
This is the vital restriction imposed by the requirement of oscillations. For 

waves, Sk, vanishes, and an infinity of pairs of wave-numbers take part simul- 
taneously in partially resonant interactions with any given mode. The inter- 
action equations are then much more complicated, and the whole order of 
magnitude structure of the asymptotic expansion is altered. 

The condition (16) is in fact so stringent that for most modes 1 there will be 
no permitted modes at all with which significant quadratic resonant interactions 
will take place. For given k,, and k, and k, restricted by the first of equations (16), 
possible values for EN are separated by intervals (c2 - c3( 8ko, so the probability 
that for conditions chosen a t  random IN1 should be less than a predetermined 
value No for any of these possibilities at all is 

~ S N , / ~ C ,  - c,l Sk,. 

Thus as e tends to zero, the number of modes in which the primary oscillation 
undergoes any significant change with Twill normally decrease to near vanishing 
point for most choices of n(k) and Sk,. If the wave-numbers k of possible normal 
mode oscillations are fixed exactly, and independently of e, only in the event 
that N = 0 for some trio will resonance persist for sufficiently small E .  In  all 
other cases the trio becomes non-resonant in the limit E + O .  The distinction 
between exactly resonant and completely non-resonant trios provides an 
example of a non-uniform limiting process. For some trios partial resonance will 
persist much longer than for others as e becomes small. 

To bridge this gap between non-resonant ( N  = 00) and exactly resonant 
( N  = 0) trios we retain the fictional possibility of the resonance condition being 
satisfied with error E N ,  where N is constant, finite, but not necessarily zero. 
Primary oscillations in such partially resonant modes are described in this 
scheme as natural oscillations by the functions ,a(k,T). When the general 
solution for these is given in 0 6, it will be seen that as N-+ co, ,a(k, T) approxi- 
mates to a constant plus a sinusoidal perturbation of magnitude proportional to 
1/N and phase N T  (equation (28)). This perturbation is an approximate descrip- 
tion of a forced oscillation ,b(k, n )  of nominally smaller order of magnitude, but 
amplitude approximately proportional to (n - n(k))-l. 

The fact that it is not possible to regard an oscillation in any given mode as 
partially resonant for arbitrarily small E puzzled the author for a while. How- 
ever, it  is not necessary for it to be described by any particular term in our 
equations for every value of E ,  provided that for any given e we can arrive 
unambiguously at a sequence of approximations to $(x, t )  which contains some- 
where contributions from every oscillation. For certain E this may be as part of 
,a@, T), but for smaller E as ,b(k, N ) .  The match between these types of term 
mentioned in the previous paragraph shows that the conclusions should be 
independent of the precise choice of the transition point M,, and indicates that 

30-2 
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the expansions based nominally on {n - n(k)} /e  constant and on n - n(k) constant 
do indeed have an overlapping range of validity. However, the error made by 
truncating the expansion procedure at any particular stage may have least 
possible order for the whole range of permitted n substantially lower than the 
nominal order for the stage. 

The procedure for determining successive terms in the asymptotic expansion 
follows that for the standard two time method. The amplitude functions ela(k,  T )  
of the primary oscillations are left initially undetermined, except in order of 
magnitude. The amplitudes e2 ,b(k, n ,  T )  of the second order forced oscillations 
are expressed in terms of them. These amplitudes are nominally O(e2),  but for 
n-n(k) just outside the range of equation (15) the true value is O(e-3). Then 
d (la(k, T)}/dT is chosen so that the remainder of the forcing function on the right- 
hand side of the equation for .& vanishes, i.e. that part which has not contributed 
to the particular integrals &. If this were not done the solution for ,$ would 
necessarily be singular for t = 7 - e-l. This was found by Phillips (1960), but the 
inclusion here of d ,a/dT in the forcing function enables the validity of the 
expansion to be extended, but only if ,a(k, T )  varies slowly in a determinate way. 

The equations describing variations of $ up to and including terms of nominal 
order €2 also admit of the inclusion in 2$ of natural oscillations described by 
2a(lc, T) .  The variation of these with T is at this stage undetermined, but for 3$ 
not to be singular when t N e-l it must be chosen in a certain way. General solu- 
tions of the equations for 2a(T) are not available, but i t  may be seen that under 
certain circumstances e2 ,a(k, T )  may grow systematically with T until when 
T N e-l and t N c2 it is comparable with s,a(k, T) .  By this stage, the scheme 
presented here has broken down. This happens, for example, if no quadratically 
resonant trios are possible at all (not even partially resonant ones) but cubic 
resonances with four interacting modes may occur. Ocean waves provide an 
example of this. In  terms of the scaled variable T all the amplitudes of the 
primary oscillations are constants, but ,a(k, T )  may grow linearly until after 
time T N e-l(t  N c2), it  is comparable with ,a(k). To describe this case the 
obvious procedure is to redefine T as e2t. In  this paper, however, the interest is 
in quadratic resonances, and for any finite T, the estimates for the least possible 
orders of magnitude of za, etc., and the remainders 2R, etc., are valid in 

0 < t < €-ITo, 

and a suitable sequence of these estimates may be found for any domain 
0 < t < e-(l+&), where a < 1. During either of these periods, arbitrarily large 
changes associated with quadratic resonances have had time to take place. This 
is in contrast to the procedure used by Phillips (1960), which was not valid 
uniformly in any domain 0 < t < e-lT0. 

Once the expansion procedure has been carried successfully as far as ,@, there 
is no reason apart from algebraic complexity why the estimate for $ given by 
equation (12) should not be refined further to include terms of any order. The 
derivative d{,a(k, T)}/dT, for example, is the sum of an infinite number of pro- 
ducts of terms of smaller nominal order. The number of these, however, arising 
from primary oscillations in any given wave-number band is finite, because of 
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the definite line and frequency spacing. For any reasonable distribution of 
amplitude I,a(k)l in the high wave-number region, the derivative should be well 
defined, and its magnitude should be comparable with that of the largest indi- 
vidual terms comprising it. When integrated over a. definite interval T < To, 
this magnitude is also that of ,a(k,T). The reasonable behaviour of I,a(k)[ as 
Ikl +a, may be assured by assuming that the initial values B(x), G(x) of $ and 
a$/at are differentiable infinitely often when regarded as periodic functions of x 
of period 4X0. 

Two further restrictions should be noted. The frequency relation n(k) chosen 
here does not vanish for any real k. Resonances into a normal mode of zero 
frequency would require special consideration, as would real values of k at which 
there are branch points for n(k).  Also the group velocities c1,cz,c3 for three 
partially resonant modes must be definitely unequal, otherwise there will be 
interactions between different trios in this neighbourhood, as well as within 
them. With these restrictions, the methods used here apply to any weakly non- 
linear system of dispersive waves with at least a quadratic non-linear term. The 
interaction coefficients entering the various equations will be different functions 
of k: and n, but the structure will be unaltered. Finally, it  cannot be too strongly 
emphasized that this picture depends crucially on 

and cannot be used to describe a continuous spectrum of waves. 
Sk, > 0, 

5. The formal expansion for oscillations 
After these descriptions we proceed to the formal analysis. We have 

I a 2  a4  a 2  
-+-+---,+1 $ = $ 2 ,  { a t 2  ax4 ax 

and 
where 

$ = € ,$(x, t )  + €2 &(x, t )  + E S 3 $ ( X ,  t )  + . . ., 
,$(x, t )  = X a(k,  T) exp [i{kx + m}] 

k 

with T = E t ,  7 = t .  

so on substitution into equation (1) and on comparison of terms of nominal 
order E 

Thus from terms of order E ,  we have that ,a(k, 2’) vanishes unless 

{ - n2+ (1 - k2+ k4)},a(k,  T) exp [i{kx+n~}] = 0. 
k 

n2 = n2(k) = 1-k2+k4.  

This is the conclusion of conventional linear theory, and gives no information 
about interactions. 

The terms of order €2, on the other hand, yield 
a 2  a 4  a 2  -+-+-+I  z$ = C-2in(k)  exp[i{kx+n(k)7}] 

a 7 2  ax4 8x2 1 k  
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Equation (18) is a linear equation for the x, T dependence of ,$. The partial 
derivatives of ,$ with respect to T enter first to nominal order 8, appearing as 
a forcing term on the right-hand sideof the equation for ,$. When writing down 
the formal solution to equation (18) the derivatives d{lu(k)} /dT,  and the quad- 
ratic coefficients &(T) ,af(T) on the right-hand side may be regarded as con- 
stants. A particular integral arising from the second term is 

2 l a w )  1afW 
- (n2 + n,), + {n(k,  + k,)}, ' 

where ,b(-k2-k, ,  -n,-n, ,T) = 

or in its complex conjugate form, 

(19)  
la,(') la,(') 

- (n, + + {n(k,  + k,)}, * 
2b(k2 + k3,  n2 + n3, T, = 

This is of bounded magnitude for all finite T, unless the denominator vanishes. 
But this possibility is excluded by condition (15). If 

In-n(k)l < d M o ,  
,b(k, n, 5") is not defined. 

For each k,  we now choose 

- 2in(k,) d{,a(k,, !P)}/d!Z'+ 2 ,a*(k,, T )  ,a*(lc,,T) e-iNT = 0, (20)  

for each pair 2 and 3 of permitted normal modes (k,, k, being regarded as the 
same pair as k,, k,) which satisfy 

k,+k,+k,  = 0, 

- s*Mo < n, + n2 + n, = EN < dM0.  

There will be relatively few permitted values of k,  for which any such modes 2 

2dM0 < Ic, - c,] 8ko and 3 exist, and provided 

there certainly will not be two such pairs. If there are none we set 

d{,a(k1, T)}/dT = 0. 

The effect of this choice of d ,a/dT is that all the terms on the right-hand side 
of equation (18) except those giving rise to the particular integral of equation ( 1 9 )  
cancel each other out. The general solution is thus 

&(x, t )  = Z 2a(k, T) exp [i{kx + m(k) 711 
k + E ,b(k, n, T )  exp [i{kx + n ~ > ] .  (21)  

k, n 

The first term is the general solution of the homogeneous equation, and describes 
oscillations in the normal modes of amplitude as yet unspecified. The bar on the 
summation sign of the second term indicates that the summation is over all 
distinct k and n defined by 

k = k2+k3, n = n(k,)  +n(k , )  

for permitted k,  and k,, but any terms which satisfy condition (15) have been 
omitted. Two pairs (k ,  n) are deemed identical only if they arise from k,, k,  and 
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k3,k,, respectively. This class is that of permitted forced oscillations of the 
second order. 

Terms of order e3 give 

+ x - 2in d& - exp [i{kx + nr}] + 2 2,a*(k2){,a*(k3) + 2b*(k3, n3)} 
k , n  dT kz, Ic.. nu 

x exp [ - i{(k2 + k3) x + (n, + n3) 41. 
The pairs ( k , n )  describing the exponents are those for the normal modes in 

the first term on the right-hand side, for forced oscillations of the second order 
in the second term, and in the third term are 

k = k2+k3, n = n(k2)+n(k3) 

for the first part, and in the second part 

k = k2+k3, n = n(k2)+n3, 

where k3, n3 describes a permitted second order forced oscillation. We permit as 
forced oscillations of the third order any of these pairs which do not satisfy 
condition (15). 

A particular integral for 3$ is 

c 3b(k, n, T )  exp [i{kx + ..}I, 
k ,  n 

where ,b(k, n) = either - 2in (d,b/dT),  

according as how the permitted third order forced oscillation arises. The remain- 
ing terms on the right-hand side are cancelled if 

- %,(a ,a,/dT) + 2(,a; 2a; +,a$ ,at) e-iNT 

= (d2/dT2) lal - 2 2,a5,b$, e--iNtf. 
k:, k;, n; 

Here, thanks to condition (17), there are at most two terms linear in 2a, arising 
from normal modes 2 and 3 which are partially resonant with mode 1, taken in 
either order. However, an infinite number of terms may enter on the right-hand 
side, but they consist of functions which have already been determined. A per- 
missible term involves second order forced oscillations (k;, %;) where 

k; = ki+k: ,  n; = ni(ki)+ni(kI;) 

and hence indirectly primary oscillations of wave-number k;, ki, ki, if 

k , + k i + k i + k :  = 0, -sdH, < n,+n;+ni+ni = d V '  ,< d M O .  
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These primary oscillations form a quartet which would partially resonate through 
cubic interactions. For any given k,, n(lcl) there may be an infinite number of 
these quartets, but only a finite number arising from primary oscillations in any 
given band of wave-numbers. Cubic interaction is an order of magnitude slower 
than quadratic resonance, and is taken into account here within a time T of order 
unity only as a secondary effect. 

In  a similar manner, from terms of order s4, 

= (d2zal/dTz) - 2((,b,, + 2a2,) (2b3’ + 2 ~ 3 , )  + laz&.,) e--iNT. 
k;, fl;. 
k;, n; 

It is seen that the structure of this equation, and of the equations for natural 
oscillations of still higher order, is essentially the same as that of equation (23). 

L N L R 
la 1 €111. € € €2 

Z h  2a €4 E2 2llr €2 €8 €8 
3bt 3a €-I @3llr €3 €2 € 3  

4b, 4 a  t4411r €4 €P €% 

... ... ... ... ... ... 
TABLE 1. The nominal order ( N ) ,  the least possible order (L)  of various terms, and the 
least possible order of the remainder (R)  after substitution into equation (I)  of the approxi- 
mation for $ up to and including that nominal order. 

A complete solution of equation (20) is given in the next section. Solutions of 
equation (22) are not available, though those of the homogeneous equation may 
presumably be obtained by differentiating those of equation (20) with respect 
to the initial conditions. However, because of the factors e-iNT, e-iNT’, it is clear 
that for large IN/ 

and 

But the maximum possible IN1 is M,E-), and from equation (20) it is consistent 
to take both d ,a/dT and la of order unity, so the least possible order of the first 
term on the right-hand side of equation (22) is O(s-4). From equation (19) if 
wave-numbers near where n ( k )  = 0 are excluded, the least possible magnitude 
for 2b is also O(s-)). 

With the assumption mentioned in Q 4 that, as Ikl +co, ,a(k) decreases suffi- 
ciently rapidly so that the sum of any series of terms formed from finite products 
of the ,a(,%) is convergent, with possible order no lower than that of some term in 
the series, we may now by inspection of equations (22), (14) and (21) assign 
a least possible order (L) to 2b,2a,3b,3a,etc., and to successive terms in the 
expansion (12) which is applicable uniformly in the domain 

1.1 < X,,  0 6 ~t = T 6 To 
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and then to the remainders ,R, 2R, etc., after substitution of these into equa- 
tion ( 1 ) .  The sequence'in the last column for the remainder is the same as 
equation (13) and justifies the expansion procedure. 

6. Solutions for a resonant trio 
Equation (20) for the rate of change of the amplitude function for the primary 

oscillation in one of the modes for a partially resonant trio is identical if N = 0 
(exact resonance) with a scaled version of the first of equations ( 1  l ) ,  derived by 
a heuristic argument. Dropping the prefix on the amplitudes, we have 

in,(da,/dT) = e-iNT, 

in,(da,/dT) = a$af e-zNT, 
in3(da,/dT) = afag e-iNT, 

together with their complex conjugate forms, so 

d d d 
a{n,a,aT} = -{n a a*> = -{n3a3a$} = .a(2aFaif:a:e-iNT}. (23)  dT d T  

These equations have two independent integrals 

n,(a,aT-Af} = n,(a,aif:-Ag} = n3(a3a:-Ag} = Z ( T ) ,  (24)  

where A:, A:, A; are the initial valuesof the non-negative quantities a,(T) aT(T), 
a , (T)at(T) ,  a,(T)az(T),  which measure the squares of the magnitudes of the 
primary oscillations without regard to phase. In  order to satisfy the resonance 
condition (16 ) ,  the frequencies n,, n2, n3 cannot all have the same sign. Then 
equation (24) shows that if at any time T one of the magnitudes exceeds its initial 
values, at least one of the other magnitudes must be smaller than at T = 0. 
Equation (24) also shows that any change Z ( T ) / n  in the square of the magnitude 
of the oscillation in mode 1 is associated with changes Z(T)/n,, Z(T)/n3 in fixed 
proportion for modes 2 and 3. In  any event 

From the complex conjugates of equation (20) we also have 
( d / d T )  g'(2aT aif: at e-""'} 

= NY(2aT aif: a: e-cNT} 

= N(dZ/dT).  

So another integral of the equations is 
B{2a: u; a: e-iNT} = NZ(  T )  + H .  

From the squares of equations (24)  and (26 )  

(dZ/dT)2+{NZ(T) +H}, = 4a1afa2aga3a$ 

= 4/nln,n3{Z(T) +n,A:}{Z(T) -tn2Ai}{Z(T) + n3A$}. (27) 
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Equation (27) expresses the rate of change of the square of the magnitude in any 
mode as the square root of a cubic function of the cumulative change in the same 
quantity. It may be integrated explicitly in terms of elliptic functions involving 
in a complicated manner the constants A,, A,, A,, H ,  determined by the initial 
conditions. However adequate qualitative information about the solutions may 
be obtained directly from the equations above. Equation (27) was first obtained 
by the author in collaboration with Dr H. K. Moffatt. 

Values of Z ( T )  which are solutions of equation (27) and of the initial conditions 
must be confined to a range between two roots of the cubic function 

f(2) = 4/n,n,n3{Z+n,A~}{Z+n,A2,}{Z+n3A~}-{NZ+H}2, 
between whichf(2) is positive. 

For dZ/dT vanishes only when Z assumes a value 2’ for which 
f(Z’) = 0. 

~f/dZIz * 0, 

d(Z - Z’)/dT N k J{d//dZJz(Z - Z’)}, 

If this is a simple zero 
and for 2 - 2’ small, 

so 2-2’ - 4(df /dZ)Iz (T-T’)2  

for some suitable constant T’. It thus appears that Z is restricted to one side 
only of the zero, and that the time taken for Z to move any small distance 
12 - 2’1 into the zero and out again is strictly finite, unless df/dzl,. vanishes. 
Z(T) cannot tend to infinity, because of the bounds set by equation (25). 

Thus it must oscillate between roots of f ( 2 )  = 0 with a period which is finite. 
The only exception to this may occur if two of the three roots are equal and so 
df/dx vanishes there. In  this case 

Z-Z’ccexp[ J{i(dzf/dZ2)1,.)T], 
and the zero is not reached in a finite time. However, out of the set of possible 
initial values for A;, A;,  A: and H this is a very exceptional case. We thus have 
the conclusion that every solution of equation (20) is a periodic function of T, 
with a period which depends on the initial conditions, but which is in general 
finite. 

The crude upper bound given by equation (25) on the maximum transfer of 
amplitude squared into any one mode of a resonant trio may be refined if IN 1 is 
large. Then the range of positive values of f(Z) which includes 2 = 0 is given 
approximately by 

- (2A,A,A,+H)/N 6 Z(T) < (2A,A,A,-H)/N if 1x1 % 1. 

The magnitudes of a,, a,, a, are thus almost constant, and it is easily seen that 
an asymptotic solution of equations (20) is 
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Each equation describes a primary oscillation of constant amplitude with a 
perturbation forced by the other two modes with relative frequency equal to the 
small deparl ure from resonance of the trio, and amplitude inversely proportional 
to the same quantity. As N -+ co, these perturbations match precisely with the 
forced oscillations described by ,b(k, n) as n - n(k) -+ 0. We are thus justified in 
saying that the interactions of primary oscillations due to quadratic resonances 
are significant only for trios satisfying the resonance conditions (1 6) with an 
error eiV of order B .  

The quantity Z(T) does not describe primarily a transfer of energy between 
the modes. The lowest order approximation for the exact energy density (equa- 
tion ( 2 ) )  is the same as for the linearized equation, and is partitioned between the 
three modes of a trio as 

n2,alaT, nga,al, nga3az, 

whereas Z(T) describes changes in 

However, equation (24 )  does not contradict conservation of energy, for to a 
lowest-order approximation, 

nlalaT, n2a2a2*, n3a34 ,  

d dZ 
D { n ~ a l u ~ + n X a , a ~ + n ~ a 3 a t }  = (nl+n,+n3)-  = 0. 

d T  

7. Cubic resonances 
In  the event that there are no quadratic resonances possible at  all, the solution 

of equation (20) for the primary oscillation is simply 
,a(k,T) = const. = A(k) .  

2AyA4. Then 

and equation ( 2 2 )  becomes 
,b(k'j + ki ,  ni + n:) = - (ni + n;), + {n(k; + k;)}2 

A*,A* A* e-iN'T d 1 2 3' 4" 2in - p1 = 2X - 
I d T  {n(ki+ki)}2- (ni+n:)2' (29)  

where the summation is over all trios 2', 3", 4" which are partially resonant with 
mode 1, k,+kh+k'j+ki = 0,  

(30) } - e*M, < n, + n; + ni + nl; = eN1 < e*MW 

No terms AT,ag +At2a t  enter on the left-hand side for there are no permitted 
pairs forming with 1 even a partially resonant trio. Equation (29) shows that if 
N' = 0, the amplitude in mode 1 will increase linearly, until after a time T N e-1, 

E22a - ela, 

and the expansion procedure has broken down, because of cubic resonances. 
Cubic resonances, in the absence of quadratic ones, may be described by 

redefining T as e2t, and proceeding essentially as before. The equations for the 
primary oscillations are 

* * * -iWT . da 1 
z n L = I ;  

d T  {n(k; + k;)}, - (n; + n;)2 a2'a3'a4' 



476 P. P. Bretherton 

This is very similar to equation (29), except that a:,, etc., are now functions of T ,  
and the derivative is of ,a(k,, T ) ,  not ,a(lc,, T ) .  However, unlike equation (20), it  
is not in general possible to dispense with the summation sign, for a type of term 
which always contributes is 

k; = -k, IC; = -k;, 

which satisfies the resonance conditions identically. Any primary mode for 
which u; is not zero must be included here, although the effect is not to transfer 
energy directly into mode 1, but to introduce a phase shift which modifies the 
transfer from modes which satisfy the resonance condition in a less trivial manner. 

To see this, suppose primary oscillations are present in only four modes, which 
satisfy the resonance condition (30). Then 

in,(da,/dT) = (c2,alaT +c,,a,a~ + ~ , ~ a ~ a $  +~,~a~aX)a,+d,agu:aT eciNT, 

in3(da3/dT) = (c3,ula~ +c3,a3u: +ca3a3a$ +c3,a4a,*) u3+d3u,*aFa: e-iNT, 

in4(da4/dT) = (c4,u,a: +c4,u,ag +c43a3az + c , , u 4 a ~ ) a 4 + d 4 a ~ a ~ a $  e-iNT. i in,(da,/dT) = ( c l l a l a ~  +c12a2a: +c13a3az +cl4a4a:) ul+d,a:u$a~ e-.L”T 

The constants cij (ij = 1 ,2 ,3 ,4 )  are all real but in general cii + cii and 

(32) 

1 -+ ________~ a’ = n2(k, + k4)  - (n3 + n4) n2(k4 + k,) - (n4 + n2I2 n2(k2 + k3) - (n, + n3), 
1 1 +- 

The coefficient of a, in the first term is always real, and in the absence of the 
second interaction term on the right-hand side, it  would make a, vary sinusoidally 
with T without change of magnitude. 

Equations similar to equation (32) were obtained for ocean waves by Benney 
(1962), using the heuristic argument of 0 3. For ocean waves the only permitted 
resonance conditions are of the form 

k , + k ,  = k3+k4, 

IniI + In21 = 1.31 + In417 
These were slightly misstated by Benney, and according to Phillips (private 
communication) on reworking his analysis the coefficients d, (i = 1. .  .4) of the 
last terms (the interaction coefficients) all turn out to be equal. This was predicted 
by Hasselmann (1963) from considerations of conservation of energy and 
momentum. In this problem (in which only energy is conserved) it appears not 
to be so. The phase shift terms have also been studied for water waves by 
Longuet-Higgins & Phillips (1962). They include the increase of phase velocity 
for a single wave-train of finite amplitude. This arises from cubic interactions of 
the wave with itself, and thus do not figure in the quadratic resonance theory. 

Although it is not possible in general, even for oscillations, to isolate individual 
resonant quartets for separate solution (because of the phase shift terms) i t  is 
worth noting that the method of solution of 5 6 works also for equations (31), and 
the four linked non-linear equations with 20 disposable constants have a general 
analytical solution. 
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The integrals 

were noted by Benney. The restrictions on Z ( T )  are no& so evident as in $6,  
because it is not obvious that the nJd, do not all have the same sign, but some 
bounds are implied by conservation of the total energy in the four modes. For 
ocean waves, when the di are all equal, these are the same as before. 

dZ/dT = 9{2af a: a$ a: e-iNT> (34) 
Also 

and d W(2af a: a; a: eriNT}/dT 

= { N -  (elalaT +e,a2ag+e,a3a; +e,a,a;)}(dZ/dT) 

where 

Thus another integral of equation (21) is 

e j  = C cij/n, (j = 1 . . . 4). 
i 

9(2aTa$a;az e-iNT} = ( N -  x ej A;) Z ( T )  - 4(x (d j /n j )  e j )  P ( T )  +H. (35) 
j i 

From equations (33), (34) and (35), 

- ( H  + ( N  - 2 eiAj2) Z - &( 

The right-hand side of this is a quarticpolynomial inZ, withcoefficients depending 
on the initial conditions. We may a t  once draw the conclusion that the general 
solution of equation (32) is a periodic function of T, with period depending on the 
initial conditions but which is only in exceptional cases infinite. 

If oscilIations in more than one resonant quartet are present simultaneously it 
is worth noting that the interactions between the quartets through the phase 
shift terms are of a rather specialized form. The integrals (33) exist for each 
quartet separately, but equation (35) for any particular quartet may now be 
obtained only by integration by parts, and will contain terms like Z(dZ’/dT) 
where 2‘ is the function Z for another quartet. On squaring equations (34) and 
(35) the final result will be a set of quadratic simultaneous equations for the 
derivatives dZldT, dZ’/dT, etc., in terms of polynomials in Z, Z‘ ,  etc. Numerical 
integration would probably be required but involving only one real parameter 2 
for each quartet-a considerable simplification of the original equations. 

If, however, the quartets are so numerous that more than one set of modes 
2‘, 3’, 4‘ resonates with mode 1 in a non-trivial manner, then more than one 
interaction term (e.g. dla$a;a: e-iN*) should appear in equation (32), and the 
solutions are linked in a much more general way. This occurs with resonant 
waves (aho = 0) ,  for which no explicit solutions of the resonance equations are 
known. 

It is not altogether surprising that only 4 real integrals of the 4 complex 
equations (32) should be necessary to determine a solution when we recall that 

(dj ej/nj) Z2}2. 
j j 
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only the relative phase arg (a: at a: a: e-iNT} can enter the interaction terms. 
For the complex amplitude function contains full information about the oscilla- 
tion, about its phase as well as its amplitude. But the essence of resonance is 
that significant interactions only occur if the relative phase remains approxi- 
mately constant over a large number of periods. After the equations have been 
simplified to pick out resonant interactions, the individual phases cannot enter 
them, even in slowly varying form. 

8. Conclusions 
The principal result of this paper is that the phenomenon of resonance may 

be put on a sound theoretical basis in terms of asymptotic expansions for small 
amplitude oscillations, at least for the model equation considered here. The 
primary oscillations interact by quadratic terms through independent resonant 
trios, with characteristic interaction time f inversely proportional to the 
amplitude 8 of the oscillations, and the tolerance with which the resonance 
condition must be satisfied for significant interaction also varies as e. If the 
resonance condition is not satisfied within this tolerance by any trio at all con- 
taining a given mode, the amplitude of the primary oscillation in that mode 
remains constant over a time t of order e-l, but may vary significantly if t N c - 2 .  

For a partially resonant trio within the tolerance, the complex primary ampli- 
tudes in each mode are periodic functions of time with a period depending on the 
initial conditions but of order e-l. A quantity proportional to the square of the 
magnitude of the oscillations is transferred periodically between the modes of 
a trio, and energy is conserved during the transfer. If the resonance condition is 
only satisfied by the trio to a poor approximation, the transfer is small, and the 
solution could alternatively be described as a constant amplitude primary oscilla- 
tion in each mode with a small amplitude secondary forced oscillation of nearly 
the same frequency forced by the other two modes. 

The higher-order terms in the asymptotic expansion describe both forced 
oscillations of frequency substantially different from natural oscillations of the 
same wave-number, and natural oscillations of amplitude smaller than the 
primary ones. The transition between natural and forced oscillations is 
adequately covered in the theory. Although the theory is arranged as an expan- 
sion in powers of 6 ,  the order of magnitude of the error made by truncating after 
successive terms increases only in powers of 8). This estimate holds for any 
interval o f t  < O(s-l), but the procedure definitely breaks down if t N c2. The 
number of primary oscillations which may influence any given mode increases 
rapidly with the nominal order of the oscillation in that mode, but is still effec- 
tively finite at each stage if the amplitude in the primary oscillations decreases 
rapidly enough with increasing wave-number. The influence is weak because the 
interaction is of high order and the amplitude small, and also because it has time 
to act limited to O(e-l). 

The methods used here and the general conclusions appear to be valid for any 
set of equations admitting quadratic resonances, provided that the linearized 
equation describes dispersive waves with a frequency relation independent of 
position which admits only one resonant trio containing any given mode, and 
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provided the group velocities appropriate to the three modes in the trio are all 
distinct. Values of the wave-number for which different branches of the frequency 
relation cross or coalesce, or for which the frequency vanishes, require special 
treatment. The fundamental assumption which is made throughout this 
paper is that attention is restricted to solutions which may be described as 
periodic functions of x, with period 4X, which is large compared to a wavelength 
but strictly finite. This would be ensured by reflecting boundaries at x: = & X, .  
If ex, is not small the trios of resonant primary oscillations cannot be described 
as independent. 

Primary oscillations for which no quadratic resonances are possible may still 
interact through cubic terms, but the characteristic time is of order E-2, and lies 
outside the scope of this expansion. However, if no quadratic resonances occur 
at all, the expansion may easily be rearranged, and it is seen that transfers of 
energy occur between modes forming resonant quartets. These are not inde- 
pendent, for the rate of transfer within a quartet may be modified through terms 
associated with the magnitude (but not the phase) of oscillations in modes 
outside the quartet. If only four primary oscillations are present, in modes 
forming a partially resonant quartet, the interaction equations, which are 
similar to those proposed for ocean waves by Benney (1962), may be solved for 
general initial conditions. The solutions are almost all periodic functions of time, 
with characteristic period N e2. If more than four primary oscillations are 
present, a general solution is not available. 

This analysis cannot be applied to the physically more significant case when 
no constraint of periodicity in x is imposed and a continuous spectrum of waves 
is present. 

The author is indebted to Dr H. K. Moffatt, Prof. D. J. Benney and above all 
Dr 0. M. Phillips for invaluable suggestions and discussions throughout the 
gestation period of this paper, also to Westinghouse Electric Corporation at 
Pittsburgh, Pa., where a substantial part of the work was done. 
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